Indicator Template

Content Area: Heart Attack
Indicator: Hospitalizations for Heart Attack

Type of EPHT Indicator

<table>
<thead>
<tr>
<th>Health outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age-adjusted rate of hospitalization for heart attack among persons 35 and over per 10,000 population</td>
</tr>
<tr>
<td>Crude rate of hospitalization for heart attack among persons 35 and over per 10,000 population</td>
</tr>
<tr>
<td>Number of hospitalizations for heart attack</td>
</tr>
</tbody>
</table>

Measures

1. Age-adjusted rate of hospitalization for heart attack among persons 35 and over per 10,000 population
2. Crude rate of hospitalization for heart attack among persons 35 and over per 10,000 population
3. Number of hospitalizations for heart attack

Derivation of Measure(s)

Numerator: Resident hospitalizations for Heart Attacks or Acute Myocardial Infarction (AMI), ICD-9-CM: 410.00 – 410.92 by gender and total for state and by county
Denominator: Midyear resident population, by gender, for state and by county
Adjustment: Age-adjustment by the direct method to Year 2000 US Standard population

Unit

1. Age-adjusted rate per 10,000 population
2. Rate per 10,000 population
3. Number

Geographic Scope

State and national

Geographic Scale

Residents of jurisdiction – State, County

Time Period

Hospital admissions between January 1 to December 31, inclusive, for each year, 2000–

Time Scale

Annual

Rationale

There currently is no single Heart Attack, also known as Acute Myocardial Infarction (AMI), surveillance system in place in the US, nor does this exist for coronary heart disease (CHD) in general. Mortality is the sole descriptor for national data for AMI. Estimates of incidence and prevalence of AMI and CHD are largely based on survey samples (e.g., National Health and Nutrition Examination Survey) or large cohort studies such as the Atherosclerosis Risk in Communities (ARIC) study.

In 2007 the American Heart Association estimated 565,000 new attacks and 300,000 recurrent attacks of acute myocardial infarction annually (National Heart, Lung, and Blood Institute: based on unpublished data from the ARIC study and the Cardiovascular Health Study (CHS)). Among Americans age 20 and older, new and recurrent MI prevalence for both men and women represented 3.7% of the US population or 7,900,000 individuals (4.9 million men and 3.0 million women). Corresponding prevalence by race and gender is 5.4% for white males, 2.5% for white females, 3.9% for black males and 3.3% for black females.

The well documented risk factors for AMI include diabetes, hypertension, obesity, hypercholesterolemia, and cigarette smoking. Increasingly investigators both in the
U.S. and abroad have shown significant relationships between air pollutants and increased risk of AMI and other forms of CHD. Studies have often focused on elderly individuals (>65 years). A number of epidemiologic studies have reported associations between air pollution (ozone, PM_{10}, CO, PM_{2.5}, SO_{2}) and hospitalizations for AMI and other forms of heart disease. Models have demonstrated increases in AMI hospitalization rate in relation to fine particles (PM_{2.5}) particularly in sensitive subpopulations such as the elderly, patients with pre-existing heart disease, especially those who are survivors of AMI or those with COPD. An increase of 10 ug/m^3 in PM_{2.5} levels was associated with a 4.5% elevation in risk of acute ischemic coronary events (unstable angina and AMI) (95% CI, 1.1–8.0). Mortality statistics have been linked for a 16 year period to chronic exposure to multiple air pollutants in 500,000 adults who resided in all 50 states. Each 10 ug/m^3 in annual PM_{2.5} was related to a 12% increased mortality risk.

Use of the Measure

The development of a standardized measures method for AMI hospital admissions among residents in each state will inform multiple users at the national, state, and local levels. These measures, and associated indicators, will allow for monitoring of trends over time and have the potential to identify high risk groups not reflected in current national data. These data may also inform prevention, evaluation and program planning efforts.

These measures will address the following surveillance functions:

- Examination of time trends in AMI hospitalizations.
- Identification of seasonal trends.
- Assessment of geographic differences in hospitalizations.
- Evaluation of differences in AMI hospitalizations by age, gender, and race/ethnicity.
- Determination of populations in need of targeted interventions
- Identification of possible environmental relationships warranting further investigation or environmental public health action, when AMI data are linked with environmental variables,

Limitations of the Measure

- Hospitalization data for Heart Attacks omits individuals who do not receive medical care or who are not hospitalized, including those who die in emergency rooms, in nursing homes, or at home without being admitted to a hospital, and those treated in outpatient settings.
- Differences in rates by time or area may reflect differences or changes in diagnostic techniques and criteria and in the coding of AMI or in medical care access.
- Differences in rates by area may be due to different socio-demographic characteristics and associated behaviors.
- When comparing rates across geographic areas, a variety on non-environmental factors, such as access to medical care and diet, can impact the likelihood of persons hospitalized for AMI.
- Reporting rates at the state and/or county level will not show the true AMI burden at a more local level (i.e. neighborhood).
Reporting rates at the state and/or county level will not be geographically resolved enough to be linked with many types of environmental data. When looking at small geographic levels (e.g., zip code), users must take into consideration appropriate cell suppression rules imposed by the data providers or individual state programs.

Although duplicate records and transfers from one hospital to another are excluded, the measures are based upon events, not individuals, because no unique identifier is always available. When multiple admissions are not identified, the true prevalence will be overestimated.

Even at the county level it can be expected that the measures generated will often be based upon numbers too small to report or present without violating state and federal privacy guidelines and regulations. Careful adherence to cell suppression rules in cross tabulations is necessary and methods to increase cell sizes by combining data across time (e.g., months, years) and geographic areas may be appropriate.

Data Sources

* Numerator: State inpatient hospitalization data (using admission date)
* Denominator: US Census Bureau population data

Limitations of Data Sources

* State hospital discharge data:
 - Using a measure of all AMI hospitalizations will include some transfers between hospitals for the same individual for the same AMI event. Variations in the percentage of transfers or readmissions for the same AMI event may vary by geographic area and impact rates.
 - Without reciprocal reporting agreements with abutting states, statewide measures and measures for geographic areas (e.g., counties) bordering other states may be underestimated because of health care utilization patterns.
 - Each state must individually obtain permission to access and, in some states, provide payment to obtain the data.
 - Veterans Affairs, Indian Health Services and institutionalized (prison) populations are not usually included in hospitalization datasets.
 - Practice patterns and payment mechanisms may affect diagnostic coding and decisions by health care providers to hospitalize patients.
 - Street address is currently not available in many states.
 - Sometimes mailing address of patient is listed as the residence address of the patient.
 - Patients may be exposed to environmental triggers in multiple locations, but hospital discharge geographic information is limited to residence.
 - Since the data captures hospital discharges (rather than admissions), patients admitted toward the end of the year and discharged the following year will be omitted from the current year dataset.
 - Data will need to be de-duplicated (i.e., remove duplicate records for the same event).
 - There is usually a two year lag period before data are available from the data owner.

* Census data:
 - Only available every 10 years, thus postcensal estimates are needed when calculating rates for years following the census year.
 - Postcensal estimates at the ZIP code level are not available from the Census
These need to be extrapolated or purchased from a vendor.

Related Indicators

- Annual average ambient concentration of PM$_{2.5}$ in microgram per cubic meter
- Number of days with maximum 8-hour average ozone concentration over the National Ambient Air Quality standard
- Number of person-days with maximum 8-hour average ozone concentration over the National Ambient Air Quality standard
- Number of person-days with PM$_{2.5}$ levels over the National Ambient Air Quality standard
- Percent days with PM$_{2.5}$ levels over the National Ambient Air Quality standard

References